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Abstract

Explanations of changes in social, geographic, or other subgroups’ relative access to8

a discrete good G are not well supported by any classical measure of inequality, even by
existing ‘margin-free’ indices. The purpose of this paper is to propose a method allowing10

analysis of generative mechanisms of inequalities. The inequality coefficient defined here
permits to compare inequality in the selection process underlying observed opportunities12

and is independent of marginal distributions (overall access to good G and fraction of
the population in the various subgroups). This coefficient offers, in general circumstances,14

a new interpretation for one familiar statistics of association comparing the differences in
proportion of the columns of the 2× 2 contingency table.16
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1. Explaining inequality of opportunity18

1.1 The difficulty to take on the problem of explanation

The problem raised here is central to any field where comparisons20

of inequality of access to a discrete good G underpin explanations of
societal differences or changes over time, such as labor discrimination,22

schooling inequalities, social mobility, urban geography, etc. Our claim
is that explanations cannot be empirically sustained until one points to24

discrepancies in social processes generating observed inequalities. For
instance, such processes may be highly differentiated between subgroups,26

but their effects on actual relative opportunity of access to G may be more
or less acute, depending on G ’s scarcity.28
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Despite the great variety of inequality of opportunity measures1,
there is none which addresses this very issue. Additionally, in this com-2

parative perspective, differences in the magnitude of inequality measures
have to be independent of the whole rate of access to G and distribution4

of subgroups within the population. In every domain requiring interpre-
tations of inequalities, one focus has been to build “margin-free” indices2.6

As is argued here, the measures developed do not tackle explanation until
the present.8

Let us take a numerical example. Suppose we have a population
divided between two subgroups S1 and S2. Individuals from the first10

subgroup S1 have less chances to accede to a good G (a definite level
of education for instance) than individuals from the second subgroup S2.12

Nevertheless the situation changes with the opening of access to G and
requires interpretation. Tables 1 and 2 describe the respective distributions14

regarding access to G of individuals from the two subgroups in two
different periods P1 and P2.16

Table 1
Distribution of access to G of individuals from subgroups S1 and
S2 in period P1

Access to G No access to G

S2 100 450 550

S1 10 540 550

110 990 1100

18

Table 2
Distribution of access to G of individuals from subgroups S1 and
S2 in period P2

Access to G No access to G

S2 340 210 550

S1 100 450 550

440 660 1100

20

1Social science research has made clear, especially with Atkinson’s [1], and Kolm’s [6]
works on distributions such as income, that value judgments concerning the nature of
inequality are inherent in any measure of inequality. See Hutchens [5] for extension to
analysis of inequality in the distribution of people across groups.

2For segregation analysis, see Duncan and Duncan [3], Blackburn, Siltanen and Jarman
[2], and Watts [9].
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The access rate to G of individuals from S1 raises from 1,8% to
18,2% between P1 and P2, while the access rate of individuals from S22

raises from 18,2% to 61,8%. The ratio of proportions, comparing access
rates, diminishes from 10 to 3,4. From this first point of view, inequality4

of opportunity decreases. Nevertheless, such a ratio cannot express the
same intensity of inequality independently of marginal distributions. For6

instance, if the fraction of the population having access to G still increases,
the ratio of proportion can remain stable (with an access rate of individuals8

from S2 ten times superior to that of individuals from S1) only if this
fraction remains inferior to 55% (all the 550 individuals from S2 access to G10

and 55 from S1). On the other hand, the exclusion rate of individuals from
S2 diminishes from 81,8% to 38,2%, while the exclusion rate of individuals12

from S1 decreases only from 98,2% to 81,8%. Thus, the ratio of exclusion
rates increases from 1,2 to 2,1. From this second point of view, inequality14

of opportunity increases. As it was the case for the ratio of access rates,
the ratio of exclusion rates cannot express the same intensity of inequality16

independently of marginal distributions. For instance, if the fraction of
the population having access to G decreases, the ratio of exclusion rates18

can remain stable (with an exclusion rate of individuals from S1 1,2 time
superior to that of individuals from S2) only if this fraction remained20

superior to 8,3% (all the 550 individuals from S1 are excluded from G and
458 = 550/1, 2 from S2). The odds ratio, which represents the product22

of the two previous ratios of proportions, diminishes between P1 and P2
from 12 to 7,3. From this third point of view, inequality of opportunity24

decreases. Odds ratios, unlike ratios of proportions, are insensitive to
marginal distributions. This insensitivity is usually characterized by the26

fact that their value does not change when we multiply throughout any
raw or column of a contingency table by a constant. For this reason,28

actual trends of research rely on log-linear models using odds ratios3 in
order to compare changes in inequalities from one population to another.30

However insensitivity to marginal variation does not mean that odds
ratios are good tools for explaining differences in inequality of opportunity32

between populations. For instance, in the case of educational inequalities,
odds ratios provide a measurement of links between social categories34

and educational attainments net of marginal distributions. Nevertheless,

3Odds ratios are ratios of two odds (ratios of the number of people incurring an event to
the number of people who have non-events): they compare here individuals’ opportunities
from a social group Ck to individuals’ opportunities from another social group Ci of access
versus no access to G .



568 N. BULLE

they do not measure variations in the selection process which generate
observed inequalities. They do not take into account the changes in2

meaning of educational attainments in terms of selection constraints while
the distribution of schooling levels varies within populations.4

The same problem arises in research on social mobility. The concepts
of absolute versus relative rates of mobility (founded on odds ratios calcu-6

lations) were substituted to the concepts of structural versus circulation
mobility. Nevertheless these concepts did not permit one to solve the8

previous problem at stake, i.e., to control for “forced” mobility which is
constrained by discrepancies in occupational structure to analyze intrinsic10

variations in the social processes underlying occupational opportunity.4

More generally, an index’s insensitivity to the distributions of mar-12

gins allows margin-free comparisons regarding the precise aspect of
inequalities the index measures. It does not necessarily allow comparisons14

of social processes generating observed inequalities. Thus, interpretation
raises implicitly theoretical assumptions usually without any clear jus-16

tification of the links between deductions and empirical measures. This
causes recurrent disagreements regarding conclusions about the social18

processes in question. Explanation needs an index aiming at comparing
inequality in the selection process underlying access to G .20

We first propose to reformulate the concept of insensitivity to
marginal distributions in order to open it to new issues, in particular22

explanation-oriented measures. We then introduce the concept of inequal-
ity in the selection process. The following is dedicated to the development24

of a measure, independent of marginal distributions, applied to this aspect
of inequality.26

1.2 Insensitivity to marginal distributions: the necessity of a broad definition

Table 3
Distribution of access to G of individuals from complementary Ci

and Ci subgroups
28

Access to G No access to G

∈ Ci αi j βi j αi j + βi j = 1−mi

∈ Ci γi j δi j γi j + δi j = mi

αi j + γi j = x j βi j + δi j = 1− x j 1

4See Sorensen [8], Sobel [7], Harrison [4].
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Insensitivity to marginal distributions: a definition. Let us consider
the 2 × 2 contingency table showing the relationship between access2

to a specific good G and belonging to a defined Ci social subgroup,
at a given stage x j of G ’s diffusion (cf. Table 3). When insensitivity4

to marginal distributions is considered, we mean that the intensity of
inequality measured by the coefficient at stake does not depend on the6

margins’ values of the contingency table. One condition is that in each
context defined by the contingency table’s margins, the same magnitude8

of inequality may be observed. Thus, one further condition is that the
coefficient’s extreme potential values must not depend on margins.10

In a more specific, but classical sense, insensitivity to marginal
distributions means that the index does not change if any row or column12

of the contingency table is multiplied throughout by a constant. The
index must be based on ratios so that changes in margins do not affect14

the meaning of the index’ magnitude in terms of relative inequality,
i.e., the index value remains stable if proportionalities are respected.16

Note that, according to the broad definition given above, it must be
possible to preserve proportionalities whatever are the margins, so that18

the coefficient’s extreme potential values must not depend on margins.

Discussion. In the restrictive, but conventional, sense of the concept of20

insensitivity to marginal distributions, changes in rows or columns are
considered independently of one another. The broad sense of the concept22

may apply to other aspects of inequality where the status quo in terms of
inequality involves interrelations between rows and columns.24

1.4 Inequality in the selection process

Generally, inequality of access to a discrete good G can be ascribed26

to the following:

(1) Net results of the selection process in a broad sense. This concerns28

the effects of all of the factors influencing individuals’ opportunities
of access to G , but taking no account of individuals’ actual access.30

(2) Diffusion of G in society, i.e., the overall proportion of individuals
who accede to G . Inequality with respect to (1) is inequality in the32

selection process defined as follows.

Inequality of opportunity in the selection process: a definition. We34

define inequality in the selection for access to a discrete good G as a
measure permitting to compare the results of the selection process for36
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access to G in a reference mark independent of variations of overall access
to G (such as the deciles, centiles, etc.).2

Discussion. In order to compare selection process results in different
contexts of good G ’s diffusion in society, we suppose that access to G4

is the result of an ordering of the whole population and of allocation of
G to the best ranked individuals, until equalizing overall rate of access to6

G . Such ranking permits us to refer to a fixed reference mark of relative
opportunity, such as the percentiles ranks of the population. Inequality8

of subgroups distributions in such a reference mark represents what we
define as “inequality in the selection process”.10

The present research rests on the assumption that apprehending
this aspect of inequality is essential for explaining observed inequalities12

and that it is possible to propose a margin-free index which solves this
problem.14

2. Distribution of opportunity in the selection process

2.1 Definition of joint densities f̃ (x, Ci) describing opportunity distribution in16

the selection process

Definition. It is assumed that access to a discrete good G has been derived18

from a latent continuous variable g which theoretically permits one to
rank the whole population according to individual opportunities of access.20

By convention, a lower value of g will mean a greater opportunity of
access to G . The variable g can be interpreted as a distance to G revealing22

overall effect of various handicaps in the process of access to G .
The population is of mass 1 and divided in k different social subgroups:24

Ci is social subgroup i and Ci is the complementary aggregated subgroup
of Ci within the population.26

The k joint densities are f (g, Ci) and the k joint cumulative distributions
are F(g, Ci) where Ci represents a nominal variable distinguishing indi-28

viduals from Ci in the whole population.
Assume that the support of g is [g, g] , its density is h(g) and its30

cumulative distribution is H(g) (supposed to be strictly increasing so that
its inverse function exists).32

Define x = H(g) the 100 x -th percentile of the distribution of g .
x represents a continuous variable varying from 0 to 1.34

Define the k joint cumulative distributions as F̃(x, Ci) = F(H−1(x), Ci) .
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Define f̃ (x, Ci) = d
dx F̃(x, Ci) the k joint densities.

2.2. Properties of joint densities f̃ (x, Ci)2

For each curve f̃ (x, Ci) we have the following properties:

2.2.1. f̃ (x, Ci) ≥ 0 since it is a density.4

2.2.2. f̃ (x, Ci) + f̃ (x, Ci) = 1 .

Proof. By definition, F̃(x) represents the fraction of the whole population6

in the first (100x) % whose opportunity of access to G is the greatest, that
is x :8

F̃(x) = F̃(x, Ci) + F̃(x, Ci) = x so that f̃ (x) = f̃ (x, Ci) + f̃ (x, Ci) = 1 .

2.2.3. f̃ (x, Ci) is traced within a square.10

Proof. x varies between 0 and 1. According to 2.2.1 and 2.2.2, f̃ (x, Ci)
varies between 0 and 1.12

2.2.4.
∫ 1

0
f̃ (x, Ci)dx = mi

Proof. F̃(1, Ci) represents the fraction of the whole population in Ci , that14

is mi :

F̃(1, Ci) =
∫ 1

0
f̃ (x, Ci)dx = mi16

2.2.5. When the distribution of Ci is independent of x , we have f̃ (x, Ci) = mi .

Proof. From Bayes’s identity: f̃ (x, Ci) = f̃ (x/Ci)×mi18

Then, in case of independence of x and Ci we have:

f̃ (x, Ci) = f̃ (x)×mi and from 2.2.2 f̃ (x) = 1 so that f̃ (x, Ci) = mi20

3. Overall coefficient of inequality of opportunity in the selection
process22

3.1 Construction of the d̃(x, Ci) straight line segments

We now consider virtual constructs in the aim of comparing opportu-24

nity in the selection process for access to a discrete good G . Following 2.1,
it is assumed that the access of individuals from various Ci subgroups to26

G , at each stage x j of G ’s diffusion, has been derived from underlying
continuous joint densities f̃ (x, Ci) . Then we assume that the curves28
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f̃ (x, Ci) are:

(1) Either broken line segments in cases where f̃ (x, Ci) = 0 or2

f̃ (x, Ci) = 1 on a segment of [0, 1] . Define d̃(x, Ci) the straight line
segment such that f̃ (x, Ci) = d̃(x, Ci) where 0 < f̃ (x, Ci) < 1 .4

(2) Or straight line segments so that f̃ (x, Ci) = d̃(x, Ci) on [0, 1] .

For each 2× 2 contingency table showing the relationship between6

accessing to G and belonging to a social subgroup Ci , at a given stage x j

of G ’s diffusion, there exists a virtual joint density f̃ (x, Ci) as defined8

above such that access of individuals from Ci to G could have been
derived from f̃ (x, Ci) . Such existence can be showed graphically.10

Figure 1
Family of virtual joint densities f̃ (x, Ci)

12

d̃(x, Ci) is the straight line segment defined in the square where f̃ (x, Ci)
is inscribed such that f̃ (x, Ci) = d̃(x, Ci) where 0 < f̃ (x, Ci) < 1 ;14

mi is the fraction of the whole population in Ci and x j the fraction
of the whole population accessing to G . According to 2.2.4, we have16 ∫ 1

0 f̃ (x, Ci)dx = mi . The family of joint densities f̃ (x, Ci) that fit this
condition is represented on Figure 1, in the case where the straight line18

segments d̃(x, Ci) has a positive slope. The complementary family of
straight line segments d̃(x, Ci) with negative slope is symmetric to this20

family to the axis x = 1/2 . As showed on Figure 1, at any stage x j of G ’s
diffusion, for each possible distribution of access to G between Ci and22
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Ci , there exists a virtual joint density f̃ (x, Ci) which can be associated to
this distribution.2

Definition of (ãi) coefficients. Define the coefficients (ãi) as the slopes
of the d̃(x, Ci) straight line segments, where 0 < f̃ (x, Ci) < 1 .4

3.2 General properties of the (ãi) coefficients

3.2.1. If the slope of d̃(x, Ci) is ãi , and Ci the complementary aggregated6

subgroup of Ci the slope of d̃(x, Ci) is (−ãi) .

Proof. According to 2.2.2, f̃ (x, Ci) + f̃ (x, Ci) = 1 . Thus, the curves are8

symmetric with respect to the axis y = 1/2 .

3.2.2. ãi < 0 (> 0) iif for any x j defining the whole rate of access to G , the10

access rate of individuals from Ci is higher (lower) than overall access to G , x j .

Proof. Let ri j be the fraction of the social subgroup Ci accessing to G at12

the stage x j of G’s diffusion, we have: ri j = 1
mi
× ∫ x j

0 f̃ (x, Ci)dx .

General case: d̃(x, Ci) = f̃ (x, Ci) on the whole interval [0, 1] so that14

d̃(x, Ci) = ãi × x + mi − ãi/2 : ∀ x j ∈ [0, 1] , ri j > x j ⇔ ãi
2mi

(x j − 1) > 0 .

Proofs are trivial in the specific cases where f̃ (x, Ci) = 0 or16

f̃ (x, Ci) = 1 on a segment of [0, 1] .

3.2.3. The (ãi) coefficients are insensitive to marginal distributions in the broad18

sense (defined in 1.2).

Proof. Insensitivity with regard to x j variations stems from definition of20

ãi in a reference mark independent of variations of overall access to G, x j .
According to its definition in 3.1, ãi characterizes the same intensity22

of inequality in the whole set of parallel straight line segments of slope
ãi -representing inequality of opportunity distributions (on the segment24

of [0, 1] where 0 < f̃ (x, Ci) < 1 ) within the square where f̃ (x, Ci) is
inscribed. From 2.2.5, we deduce that in a context in which inequality in26

the selection process is independent of Ci , d̃(x, Ci) would be fitted to the
horizontal straight line segment y = mi on [0, 1] so that ãi = 0 . In a28

context with full inequality of opportunity, the disadvantaged subgroup
Ci would tend to make up the bottom intervals inter-percentiles of the30

population so that d̃(x, Ci) would tend to be aligned to the vertical axis
x = 1−mi (according to 3.2.2 ãi > 0 ). In the reverse situation, the whole32

subgroup Ci would tend to make up the top intervals inter-percentiles of
the population so that the d̃(x, Ci) would tend to be aligned to the vertical34
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axis x = mi (with ãi < 0 ). Consequently, whatever are the values of mi
and x j, ãi ∈ ] −∞, +∞[ . Coefficient ãi ’s values are not constrained by2

marginal values, i.e., coefficient ãi is insensitive to marginal distributions.

3.3 Specific properties of the (ãi) coefficients in the general case4

General case:

∀ i
|ãi|
2
≤ mi ≤ 1− |ãi|

2
(1)6

None of the d̃(x, Ci) straight lines segments (defined in 3.1) intersect the
top or the bottom of the square where the f̃ (x, Ci) curves are inscribed8

(see demonstration in annex). Thus ∀ i , d̃(x, Ci) = f̃ (x, Ci) on the whole
interval [0, 1] .10

3.3.1. According to (1),

−1 ≤ ãi ≤ +1 (2)12

Proof. According to (1), |ãi |
2 ≤ mi and |ãi |

2 ≤ 1−mi so that |ãi| ≤ 1 .

3.3.2. If subgroups are aggregated, Ck = ∪Ci the slope of d̃(x, Ck) is equal to14

the sum of the slopes of

d̃(x, Ci) : ãk = ∑ ãi . (3)16

Proof. As defined in 3.1, the joint density function f̃ (x, Ck) underlying
access to G of individuals from Ck = ∪Ci , must satisfy the following18

condition:
At each stage x j of G ’s diffusion,20

∫ x j

0
f̃ (x, Ck)dx = ∑

∫ x j

0
d̃(x, Ci)dx

= ∑
∫ x j

0

[
ai ×

(
x− 1

2

)
+ mi

]
dx22

The straight line segment d̃(x, Ck) = (∑ ãi)× (x− 1/2) + (∑ mi) , satisfies
the condition on [0, 1] . Conversely ãk = ∑ ãi and mk = ∑ mi satisfies24

the general condition (1) above: |ãk |
2 ≤ mk ≤ 1− |ãk |

2 so that f̃ (x, Ck) =
d̃(x, Ck) on [0, 1] and we deduce ãk = ∑ ãi .26

Proof. Suppose that ãk and mk don’t satisfy condition (1) so that d̃(x, Ck)
intersect the top or the bottom of the square where the f̃ (x, Ck) curve28

is inscribed. The case f̃ (x, Ck) = 0 on a non empty segment of [0, 1]
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is rejected as by hypothesis in this section (general case (1) applies), ∀ i
1 ≤ i ≤ n , ∀ x ∈ ]0, 1] , d̃(x, Ci) > 0 . Suppose f̃ (x, Ck) = 1 on a2

segment of [0, 1] , we deduce from 3.2.1 that f̃ (x, Ck) = 0 on a segment of
[0, 1] . Such an hypothesis is rejected for the reason previously stated: by4

hypothesis in this section, ∀ i 1 ≤ i ≤ n , ∀ x ∈ ]0, 1] , d̃(x, Ci) > 0 .

3.3.3.
k
∑

i=1
ãi = 06

Proof. The equation of the straight line underlying inequality in the
selection process for access of the whole population to G is d̃(x) = 1 ,8

so that, according to 3.3.2,
k
∑

i=1
ãi = 0

3.3.4. Max(|∑ ãi|) = ãg ≤ 1 : the maximum ãg of the absolute value of ∑ ãi is10

necessarily inferior or equal to one.

Proof. According to general case (1) and additivity of coefficients (3),12

we have 1/2 ãg = 1/2 ∑
ãi>0

ãi ≤ ∑
ai>0

mi and 1/2 ãg = 1/2 ∑
ãi<0

(−ãi) ≤
∑

ãi<0
mi = 1− ∑

ãi>0
mi so that ãg ≤ 1 .14

3.4 Interpretation of general coefficient ãg as an overall measure of inequality
in the selection process for access to G16

Define the two groups ∪Ci (ãi ≤ 0) = C−g and ∪Ci (ãi ≥ 0) =
C+

g as the sets of subgroups Ci where, according to 3.2.2, individuals18

have opportunity of access to G respectively higher and lower than the
average. According to assumptions in 3.1, we consider a virtual construct20

permitting to compare opportunity of access to G . We assume that access
of individuals from C+

g to good G has been derived from underlying22

continuous joint density f̃ (x, C+
g ) supposed to be linear on the segment

of [0, 1] where 0 < f̃ (x, C+
g ) < 1 : f̃ (x, C+

g ) = d̃(x, C+
g ) . The coefficient24

ãg represents the slope of d̃(x, C+
g ) . According to 3.3.2 and 3.3.3, if general

condition (1) is followed, ∑
ãi>0

ãi = ∑
ãi<0

(−ãi) = ãg .26

Discussion. We propose to check ãg ’s qualities as an index of inequality of
opportunity through conditions imposed to segregation indices. Segrega-28

tion is defined as a measure of the unevenness of distribution of individual
characteristics between organizational units. The validity of a measure30

as an index of segregation relies on the following four general criteria5:

5As listed by Watts [9].
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size invariance, organizational equivalence, symmetry, and the principle
of transfers in its weak form. One further requisite concerns the index2

independence to marginal distributions. We explicit below the meaning
of these properties in segregation analysis and adapt them for inequality4

of opportunity analysis. Segregation analysis focuses on dissimilarity
between units Ui (types of job, urban areas etc.) in terms of individual6

characteristics (men/women, whites/nonwhites, etc.), which depends
on distribution of individual characteristics between units. Inequality8

of opportunity analysis focuses on dissimilarity between subgroups Ci
in terms of opportunity, which depends on distribution of opportunity10

between subgroups. The status of units Ui in segregation analysis par-
allels that of subgroups Ci in inequality of opportunity analysis. Note12

that, in segregation analysis, advantaged (disadvantaged) Ui units are
characterized by a percentage of advantaged (disadvantaged) individuals14

higher than average. This identification can be compared to the status of
advantaged (disadvantaged) Ci subgroups defined above by a percentage16

of individuals accessing to G (excluded from G ) higher than average.
Nevertheless, the status of segregation variable (distinguishing individual18

characteristics) differs to that of opportunity variable (distinguishing
access and non access to G ) on one point. Individual characteristics must20

be formally equivalent for measuring segregation (that is the condition of
the symmetry principle detailed below). On the other hand, “access” and22

“non access” to G are not necessarily given a formally equivalent status
when defining indices of inequality of opportunity.24

3.4.1. Size invariance refers to the invariance of the index when the populations
are changed proportionately, so that I(λN) = I(N) where λ is a positive scalar.26

Proof. ãg has been defined on the basis of fractions mi of the whole
population in Ci subgroups.28

3.4.2. Organizational equivalence refers to invariance of the index when two
of the units that have an identical pattern of segregation are combined or when a30

single unit is divided into units with identical segregation patterns. This criterion
should be reinterpreted as classification equivalence referring to Ci subgroups.32

Proof. According to its definition in 4, the coefficient ãg opposing
opportunity of individuals belonging to C−g and C+

g subgroups is not34

affected by any composition of the Ci subgroups within these two sets.
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Note that if general condition (1) is followed, according to 3.4 we have
∑

ãi>0
ãi = ∑

ãi<0
(−ãi) = ãg .2

When two subgroups show identical level of inequality in the se-
lection process are combined, according to 3.3.2, the resulting coefficient4

of inequality of aggregated group is equal to the sum of the inequality
coefficients of each subgroup, thus ãg remains invariant. It also remains6

invariant when a single subgroup is divided into further subgroups with
identical level of inequality.8

3.4.3. In segregation analysis, symmetry means that the index expresses segre-
gation with the same magnitude if data regarding advantaged and disadvantaged10

individual characteristics are commuted in the index definition. Reversing the
respective status of segregation and opportunity variables here, symmetry means12

that the index expresses inequality of opportunity with the same magnitude if
data regarding access to G and exclusion from G are commuted in the index14

definition so that we consider equally the opportunity of access to G and the risk
of exclusion from G .16

Proof. According to 3.4 the straight line segment d̃(x, C+
g ) characterizes

inequality of access of individuals from C+
g to good G as well as exclusion18

from G of the same individuals. Commutating data regarding opportu-
nity of access to G and risks of exclusion from G , which corresponds to20

a reversal of the ordering of individuals within the population, does not
affect ãg ’s magnitude.22

Discussion: In segregation analysis, the object of the symmetry criteria
prevents contradictory diagnostics if there are two values for the index.24

Dissimilarity between subgroups Ci in terms of opportunity of access
or in terms of risk of exclusion should also refer, for coherence, to the26

same aspect of inequality of opportunity. This property is a consequence
of the definition of ãg in a reference mark independent of variations of28

overall access to G . Symmetry is not followed by several classical indices
of inequality of opportunity: the two ratios of proportion, for instance,30

don’t follow this condition.
Note that situations regarding advantaged (disadvantaged) units32

in segregation analysis are implicitly symmetrical since there is one
value for the index characterizing overall segregation opposing the two34

complementary groups of units. Accordingly, the respective situations of
C−g and C+

g regarding inequality in the selection process are symmetrical,36
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so that we have one overall value measuring this aspect of inequality of
opportunity within the population under study: ãg .2

3.4.4. According to the principle of transfers in its strong form, segregation
declines when for example, within the set of the disadvantaged units, a member4

with disadvantaged characteristics moves from a less advantaged unit to a more
advantaged one and is replaced by the member with advantaged characteristics6

from the latter unit, ceteris paribus. According to the weak form of the principle,
when the exchange occurs between an advantaged and a disadvantaged unit, then8

the index should decline.

As for organizational equivalence, this principle has to be reinter-10

preted to refer to exchanges of opportunity of access to G (of exclusion
from G ) between the subgroups Ci . The coefficient ãg satisfies the12

principle of transfers in its weak form.

Proof. According to the construction of inequality coefficients defined in14

3.1, ãg (−ãg) characterizes C+
g (C−g ) relative opportunity distribution

underlying access to G , so that if one more individual from C+
g accedes16

to G and one less from C−g , ãg , tends to diminish.

3.4.5. Insensitivity to marginal distributions18

Proof. Insensitivity to marginal variation is demonstrated in 3.2.3 for
(ãi) coefficients comparing relative inequality of two complementary20

subgroups Ci and Ci , and then applies for ãg .
In conclusion, the coefficient ãg is a valid measure of inequality of22

opportunity. Besides, ãg is defined in a reference mark independent of
variations of overall access to G and is insensitive to the distribution of the24

Ci subgroups within the population. Thus the ãg coefficient represents an
overall measure of inequality in the selection process as defined in 1.4 and26

is insensitive to margins ( x j and mg ).

4. Empirical determination of the (ãg) coefficient28

4.1 Determination of the d̃(x, C+
g ) straight line segment

We know the fraction mg of the population in the C+
g subgroup as30

well as the fraction rg of the C+
g subgroup having access to G . We can

thus construct the straight line d(x, C+
g ) such that

∫ 1
0 d(x, C+

g )dx = mg32

and
∫ x j

0 d(x, C+
g )dx = rg×mg . Define ag the slope of this straight line. It

can be easily shown that if the curve f̃ (x, C+
g ) defined in 3.4 is a broken34
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line on [0, 1] , that is f̃ (x, C+
g ) = 0 or f̃ (x, C+

g ) = 1 on a non-empty

segment of [0, 1] , i.e. d̃(x, C+
g ) intersects the base or the top of the square2

Figure 2
Graphic representation of contingency table data and construction
of d(x, C+

s )
4

where f̃ (x, C+
g ) is inscribed, then the condition ag

2 ≤ mg ≤ 1− ag
2 is not

followed, i.e. d(x, C+
g ) intersects the base or the top of the square where6

f̃ (x, C+
g ) is inscribed (see annex).

We are then facing two cases:8

(1) Condition (1) is verified: ag
2 ≤ mg ≤ 1− ag

2 . The straight line d(x, C+
g )

does not intersect the base or the top of the square where the virtual10

joint density f̃ (x, C+
g ) is traced. We deduce that the f̃ (x, C+

g ) curve is
a straight line segment on [0, 1] (since if it were a broken line segment12

the contrary would be observed): f̃ (x, C+
g ) = d̃(x, C+

g ) on [0, 1] so that

the straight line d(x, C+
g ) merges with the virtual construct d̃(x, C+

g )14

underlying access of individuals from C+
g to good G . Hence ag = ãg .

Proof. f̃ (x, C+
g ) = d̃(x, C+

g ) on [0, 1] so that (according to 3.1)16

∫ x j

0
d̃(x, C+

g )dx = rgmg and
∫ 1

0
d̃(x, C+

g )dx = mg .

The straight line segment d(x, C+
g ) is the only one that satisfies this18

condition so that d(x, C+
g ) = d̃(x, C+

g ) on [0, 1] .

(2) Condition (1) is not verified: The straight line d(x, C+
g ) intersects the20

base or the top of the square where the joint density is traced. Hence,
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the f̃ (x, C+
g ) curve is a broken line segment on [0, 1] ; d(x, C+

g ) does

not merge with d̃(x, C+
g ) underlying access of individuals from C+

g to2

good G .

4.2 Calculation of the ãg coefficient4

As shown in 4.1, if condition (1) is verified for (ag, mg) , then the
d(x, C+

g ) straight line merges with the virtual d̃(x, C+
g ) straight line6

segment. In the reverse case, the calculation of ãg remains possible if the
fraction of the C+

g subgroup having access to G is not nil (and if the8

fraction of the C−g subgroup having no access to G is not nil). For this
more complex and less common case, the calculation of ãg is presented in10

annex. In the following we suppose that condition (1) is verified.

4.2.1 Calculation12

mg represents the fraction of the population in social subgroup C+
g ,

and rg represents the fraction of the subgroup C+
g with access to G .14

According to 4.1, define the straight line d(x, C+
g ) = ag × x + mg −

ag/2 so that16

∫ 1

0
d(x, C+

g )dx = mg and
∫ x j

0
d(x, C+

g )dx = rg ×mg with x j 6= 0 and x j 6= 1.18

We have:

ãg = ag =
2×mg × (x j − rg)

(1− x j)× x j
. (4)20

4.2.2 According to 4.2.1

ãg/2 =
mg −mgrg

1− x j
− mgrg

x j
22

Referring to parameters in Figure 2:

ãg = 2×
[

δg

1− x j
− γg

x j

]
.24

The ãg/2 coefficient is calculated as a familiar statistic of association,
the difference of proportions comparing columns of the contingency table6

26

6See Blackbur, Siltanen and Jarman [2] for a comparison with basic segregation indexes.
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Returning to the example given on tables 1 and 2 in 1.1, we can
calculate ãg :2

In period P1, ãg = 2
[

550
990

− 10
110

]
= 0, 91 .

In period P2, ãg = 2
[

450
660

− 100
440

]
= 0, 91 .4

We check that
ag

2
≤ mg ≤ 1− ag

2
: 0, 45 ≤ 0, 5 ≤ 0, 55

The conclusion is that inequality in the selection process remained6

stable between periods P1 and P2. The changes revealed by the variations
of different measures of inequality as the two ratios of proportions and8

their product (an odds ratio) represent the effect of the opening of access
to G on these measures while the results of generative mechanisms10

underlying inequality are the same in the two periods.

5. Intrinsic inequality in the selection process12

A definition. Suppose there is a hierarchical ranking of n discrete goods
Gk (constituting a vertical ordering of spatial units, types of jobs, social14

status, education levels, etc.) such that all individuals accessing to any
higher ranked good Gk+1 would have access to the lower ranked good16

Gk . Inequality coefficients in the selection process are ãk
g with 1 ≤ k ≤ n .

Intrinsic inequality in the selection process for access to the various goods18

Gk
0≤k≤n

is represented by the function Ãg(x j) . Ãg(x j) is a continuous

function describing overall inequality in the selection process for access to20

the various percentile ranks of the population that underlies opportunity
of access to the different goods Gk

0≤k≤n
.22

Suppose we have, for instance, two populations Q1 and Q2. In each
population, n discrete goods Gk as defined above are considered. We24

dispose of n overall measures of inequality in the selection process for
access to the n goods Gk . The various cutting points in the percentile26

ranks of the population underlying access from the less selective to the
most selective good Gk usually differ from one population to another.28

Nevertheless, simple extrapolations may suffice to compare overall in-
equality in the selection process for access to each specific percentile rank30

of the population, i.e. intrinsic inequality in the selection process.

Discussion. Intensity of inequality in the selection process for access to32

a good Gk may depend on the overall rate of access xk to Gk . This
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would not be the case if the ãk
g coefficients were equal. In the reverse case,

comparisons of inequality in the selection process for access to only one of2

the goods Gk do not tell the whole story as far as explanation is called into
question.4

Note that the approach developed here can be applied to inequality
in the selection process for access to a continuous good G , income6

for instance. In this case, the variable g described in 2.1, underlying a
ranking of the population, could be directly inferred from the quantity8

of G one possesses. Analysis of inequality in the selection process would
rely on comparisons of joint densities f̃ (x, C+

g ) characterizing, in each10

population, opportunity distribution of individuals from disadvantaged
subgroups as opposed to opportunity distribution of individuals from12

advantaged ones.

6. Conclusion14

The issue at stake develops when interpreting divergence in op-
portunities of access to a discrete good G between populations. When16

measuring such discrepancies, alternative methods of analysis usually
provide different and even contradictory results. These contradictions are18

supposed to translate ultimate indecisiveness of standpoints about in-
equalities. However, each measure isolates a different feature of inequality20

and may be subject to criteria of validity relative to its aim.
In an explanatory analysis of changes in opportunity of access to22

good G , one may aim at comparing inequality of opportunity in the
selection process. The general ãg coefficient of opportunity inequality24

proposed here, which opposes advantaged subgroups (with a rate of
access to G superior to average) to disadvantaged ones, permits such26

comparisons and is not sensitive to marginal distributions.
Provided that general case (1) applies, the overall level of inequality28

in the selection process ãg is calculated as a familiar statistics of asso-
ciation. The coefficient ãg represents twice the value of the difference30

of proportions comparing columns of the 2 × 2 contingency table. Note
that the necessity to refer to insensitivity to margins in a broad sense32

has been claimed. Such a sense may apply to concepts of inequality
involving interrelations between rows and columns of the contingency34

table. According to this broad meaning, the defined general level of
inequality ãg is insensitive to margins with regard to its proper object of36

measure, while the difference of proportions comparing columns of the
contingency table is not.38
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It should be noted that, as long as the problem of inequality of
opportunity is at play, equality is not absurd as a reference for measuring2

discrepancies between subgroups, i.e., a sufficient level of heterogeneity
within subgroups is likely to be achieved-thus, general case (1) is expected4

to apply. In other cases, provided that at least one member of the dis-
advantaged group accesses to G (and that at least one member of the6

advantaged group does not access to G ), the coefficient of inequality in
the selection process can also be calculated. In such cases its value differs8

from the difference of proportions comparing columns of the contingency
table.10

Finally, the coefficient of inequality of opportunity developed here
exploits the fact that, with respect to the selection process for access to12

G , one can infer continuous distributions of relative opportunity within
population, even if G is a discrete good. In doing so, the defined coeffi-14

cient of inequality in the selection process aims to compare the results of
microsociological processes generating inequalities observed at macroso-16

cial level, whereas usual measures allow only for hypotheses on these
matters. The process of access to G is still a black box, but comparisons18

of overall inequality relative to the selection process represent a positive
tool for explaining the statistical relations observed.20

Annexure. Calculation of ãg specific cases

In the following, mg is the fraction of the whole population in C+
g ,22

x j is the fraction of the whole population accessing to G and rg the
access rate to G of individuals from C+

g . The equation of d̃(x, C+
g ) is24

y = ãgx + b̃g . The equation of d(x, C+
g ) is y = agx + bg .

By construction (see 4.1),26

∫ x j

0
d(x, C+

g ) = S1 and
∫ 1

x j

d(x, C+
g ) = S228

ag = 2×
[

S2

1− x j
− S1

x j

]
=

2×mg × (x j − r j)
(1− x j)× x j

(see 4.2.1).

(I) Condition for d̃(x, C+
g ) to intersect the basis of the square where30

f̃ (x, C+
g ) is traced.

Let us specify the conditions of the case described by Figure 3.32
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For a given fraction mg of the whole population in C+
g , the maximal

value of ãg for d̃(x, C+
g ) not to intersect the basis of the square where2

f̃ (x, C+
g ) is traced is ãg

2 = mg (see Figure 3). In this limit case, we have

S1 = rgmg = mgx2
j so that rg = x2

j . Conversely, S1<mgx2
j ⇒

ãg
2 > mg (see4

Figure 3).

6

Figure 3
d̃(x, C+

g ) intersects the basis of the square where f̃ (x, C+
g ) is traced

Hence ãg
2 > mg ⇔ d̃(x, C+

g ) intersects the basis of the square and d̃(x, C+
g )8

intersects the basis of the square

⇔ rg < x2
j10

⇔ ag
2 > mg (the demonstration is analytically simple knowing

ag
2 =

mg×(x j−rg)
(1−x j)×x j

)12

⇔ d(x, C+
g ) intersects the basis of the square

(II) Condition for d̃(x, C+
g ) to intersect the top of the square where14

f̃ (x, C+
g ) is traced.

16

Figure 4
d̃(x, C+

g ) intersects the top of the square where f̃ (x, C+
g ) is traced
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Let us specify the conditions of the case described by Figure 4.
For a given fraction mg of the whole population in C+

g , the maximal2

value of ãg for d̃(x, C+
g ) not to intersect the top of the square where

f̃ (x, C+
g ) is traced is ãg

2 = 1−mg (see Figure 4). In this limit case, we have4

S4 = (1− mg)(1− x j)2 . We have S4 = 1− x j − mg + rgmg , we obtain:
rg = 1

m (x2
j + 2mgx j −mgx2

j − x j) . Conversely S4 < (1−mg)(1− x j)2 ⇒6

ãg
2 > 1−mg (see Figure 1).

Hence ãg
2 > 1−mg8

⇔ d̃(x, C+
g ) intersects the top of the square where f̃ (x, C+

g ) is traced
and10

d̃(x, C+
g ) intersects the top of the square

⇔ rg < 1
m (x2

j + 2mgx j −mgx2
j − x j)12

⇔ ag
2 > 1−mg (the demonstration is analytically trivial)

⇔ d(x, C+
g ) intersects the top of the square14

(III) Condition for d̃(x, C+
g ) to intersect the basis and the top of the square

where f̃ (x, C+
g ) is traced.16

Figure 5
d̃(x, C+

g ) intersects the basis and the top of the square where
f̃ (x, C+

g ) is traced
18

Let us specify the conditions of the case described by Figure 5. According
to I and II:20

1− ãg
2 < mg <

ãg
2

⇔ d̃(x, C+
g ) intersects the basis and the top of the square where22

f̃ (x, C+
g ) is traced and d̃(x, C+

g ) intersects the basis and the top
of the square24
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⇔ rg < x2
j and rg = 1

mg
(x2

j + 2mgx j −mgx2
j − x j)

⇔ 1− ag
2 < mg <

ag
22

Note that:

x2
j <

1
mg

(x2
j + 2mgx j −mgx2

j − x j) ⇔ mg >
1
2

(5)4

Proof. We have 0 < x j < 1 .

(IV) Synthesis of the results6

• The condition for d̃(x, C+
g ) to intersect the basis and not the top of the

square (which supposes mg < 1
2 ) is:8

mg < inf
(

ag

2
, 1− ag

2

)

⇔ 1
mg

(x2
j + 2mgx j −mgx2

j − x j) < rg < x2
j10

• The condition for d̃(x, C+
g ) to intersect the top and not the basis of the

square (which supposes mg > 1
2 ) is:12

mg > sup
(

ag

2
, 1− ag

2

)

⇔ x2
j < rg <

1
m

(x2
j + 2mgx j −mgx2

j − x j)14

• The condition for d̃(x, C+
g ) to intersect the basis and the top of the

square is:16

1− ag

2
< mg <

ag

2

⇔




rg < x2
j if mg > 1

2

rg < 1
mg

(x2
j + 2mgx j −mgx2

j − x j) if mg < 1
2

18

(V) Calculation of ãg

• First case. d̃(x, C+
g ) intersects the basis and not the top of the square20

where f̃ (x, C+
g ) is traced (thus, according to (3), mg < 1

2 ):

mg < inf
(

ag

2
, 1− ag

2

)
22

⇔ 1
mg

(x2
j + 2mgx j −mgx2

j − x j) < rg < x2
j

k is the abscissa of the intersection point with the basis of the square:24
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Calculating S1 = rgmg and (S1 + S2) = mg we have:
{

ãg(x j − k)2 = 2rgmg

ãg(1− k)2 = 2mg
2

We deduce k =
x j−√rg
1−√rg

Substituting this expression for k in the second equation we find:4

ã=2mg

[1−√rg

1− x j

]2

• Second case. d̃(x, C+
g ) intersects the top and not the basis of the square6

where f̃ (x, C+
g ) is traced (thus, according to (3), mg > 1

2 ):

mg > sup
(

ag

2
, 1− ag

2

)
8

⇔ x2
j < rg <

1
mg

(x2
j + 2mgx j −mgx2

j − x j)

k′ is the abscissa of the intersection point with the top of the square:10

Calculating S4 = 1 − x j − mg + rgmg and (S3 + S4) = 1 − mg we
have:12

{
ãg(k′ − x j)2 = 2S4

ãg(k′)2 = 2(1−mg)

We deduce k′ = x j

1−
√

S4
1−mg

14

Substituting this expression for k ’ in the second equation[√
ãg =

√
2(1−mg)

k′

]
we find:16

ãg = 2
[√

1−mg −
√

1− x j −mg + rgmg

x j

]2

• Third case. d̃(x, C+
g ) intersects the top and not the basis of the square18

where f̃ (x, C+
g ) is traced:

1− ag

2
< mg <

ag

2
20

⇔




1− rg < x2
j if mg > 1

2

2− rg < 1
m (x2

j + 2mgx j −mgx2
j − x j) if mg < 1

2
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Calculating S1 = rgmg and S4 = 1− x j −mg + rgmg we have:
{

ãg(k′ − x j)2 = 2S4

ãg(x j − k)2 = 2S1
2

By definition, k = −b̃g
ãg

and k′ = 1−b̃g
ãg

so that we have k′ = 1
ãg

+ k .

From the two equations above we deduce
1

ãg
+k−x j

x j−k =
√

S4
S1 so that4

1
ãg

= (x j − k)
[√

S4
S1

+ 1
]

and
1
ãg

=
1

2S1
(x j − k)2.

We deduce (x j − k) = 2S1
[√

S1+
√

S4√
S1

]
and with the second equation we6

have:

ãg =
1
2

[
1√

S1 +
√

S4

]2

=
1
2

[
1√rgmg +

√
1− x j −mg + rgmg

]2

.8
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